Adaptable House Project: Support System

Monica M. Santiago¹, Victoria M. Landrum¹, William Chuang¹, Megan Lee¹

¹Department of Mechanical Engineering, University of Washington, Seattle, WA

BACKGROUND

The Adaptable House Project aims to increase independence and confidence in the mobility of individuals by providing full or partial body-weight support in a user's home. This subsystem focuses on the interface between the body-weight support modes and the user.

CORE REQUIREMENTS

Existing solutions do not allow for varying ranges of mobility in daily life or inhome usage. To address these gaps, our design expects the following:

Customer Requirements

- ✓ Ease of use
- Safe and durable
- **S** Full rotation
- Load capacity of 300 lbf (static)

Engineering Requirements

Comfortable and promotes good health

Integrable into the user's home


Customizable

Scalable in size

Minimal transition time

DESIGN AND DEVELOPMENT

The system includes 3 distinct modes of support for varying levels of mobility: Fall Protection mode, Partial Support mode, and Full Support mode.

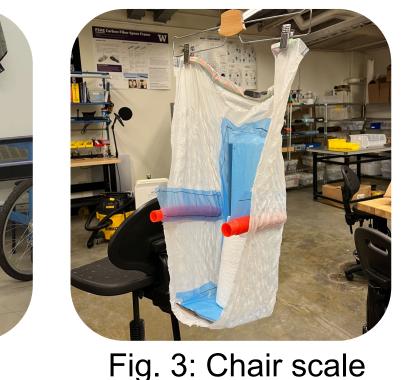

Initial Concepts

Fig. 1: Initial concepts for the system included three support modes accessible via one connection line to a gantry car. Each mode is attached to a horizontal bar fitted with a rotating carabiner to allow for full rotation and fast switching between modes.

Low-Fidelity Prototypes Medium-Fidelity Prototypes

Fig. 2: Cinching mechanism testing

inserts and arm rests

Fig. 4: Fall Protection and Partial Support Modes

Fig. 5: Full Support Mode

RESULTS & VALIDATION

Frame dynamically loaded and supports 300+ lbf for all system modes

Fig. 8: Final Frame

Harness

dynamically

loaded and

300 lbf

Fig. 6: Tensile and shear tests were performed on fabric and hook-and-loop components to inform the amount of fabric used in the design

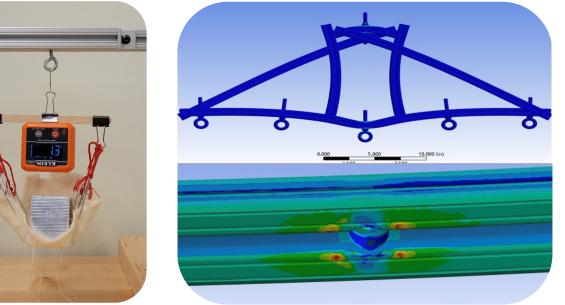


Fig. 7: Model chair frames were analyzed for tilt angle. Finite element analysis was used to find the maximum bending stress and safety factor (3.49) for the final frame.

CONCLUSION & NEXT STEPS

Successful testing has grown confidence in the harness subsystems for manufacturability and use in an in-home setting.

Further development of stowing methods for each mode should be explored for ease of use.

Time (s) Fig. 9: Dynamic loading test for the Fall Protection Mode

Users can comfortably wear system freely for 4+ hours and can apply full bodyweight during harness modes.

Fig. 10: Users testing and wearing the harness in daily activities

UNIVERSITY of WASHINGTON

MECHANICAL ENGINEERING

Full support mode should consider a wider variety of stiffer chair designs for more comfort.

ACKNOWLEDGEMENTS

Thank you to Mary Meyer, Stan Chiu, Eli Patten, Bill Kuykendall, and Eamon McQuaide for their invaluable help during this project.

Mechanical Engineering Capstone Exposition

May 29th 2024, Husky Union Building, University of Washington, Seattle, WA

